On Coverings of the Integers Associated with an Irreducibility Theorem of A. Schinzel

نویسنده

  • Michael Filaseta
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Irreducibility Theorem of A. Schinzel Associated with Coverings of the Integers

A covering of the integers is a system of congruences x aj (mod mj), where aj and mj denote integers with mj > 0 for each j, such that every integer satis es at least one of the congruences. An open problem (which surfaced over 40 years ago) is to determine whether a covering of the integers exists for which the indices j range over a nite set and the mj are distinct odd integers > 1. The probl...

متن کامل

A polynomial investigation inspired by work of Schinzel and Sierpiński

Define a covering system (or covering) of the integers as a finite collection of congruences x ≡ aj (mod mj), with 1 ≤ j ≤ r, such that every integer satisfies at least one of these congruences. As an interesting application of coverings, W. Sierpiński [4] showed that there are odd positive integers k for which k · 2 + 1 is composite for all integers n ≥ 0. For d ∈ Z, the first author [1] consi...

متن کامل

A Generalization of an Irreducibility Theorem of I. Schur

is irreducible. Irreducibility here and throughout this paper refers to irreducibility over the rationals. Some condition, such as ja0j = janj = 1, on the integers aj is necessary; otherwise, the irreducibility of all polynomials of the form above would imply every polynomial inZ[x] is irreducible (which is clearly not the case). In this paper, we will mainly be interested in relaxing the condi...

متن کامل

Hilbert ’ s irreducibility theorem , and integral points of bounded degree on curves par Aaron LEVIN

We study the problem of constructing and enumerating, for any integers m,n > 1, number fields of degree n whose ideal class groups have “large” m-rank. Our technique relies fundamentally on Hilbert’s irreducibility theorem and results on integral points of bounded degree on curves.

متن کامل

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000